Detecting Solidification using Moisture Transport from Saturated Lightweight Aggregate

Ryan Henkensiefken, US Concrete
Gaurav Sant, Purdue University
Tommy Nantung, INDOT
Jason Weiss, Purdue University

Prepared and Presented at the 2009 ACI Spring Convention
San Antonio, Texas, by Ryan Henkensiefken
Introduction

- LWA concrete is used for reduced weight
- Unintentional internal curing
- Typically made with coarse LWA
- Protect more paste with equal volume of fine LWA
Introduction

• Internal curing study at Purdue
 – LWA properties
 – Drying and autogenous shrinkage
 – Restrained and unrestrained shrinkage
 – Plastic shrinkage
 – Sorption/Freeze-Thaw
 – Strength and MOE
 – Full-scale testing

• Use x-ray absorption to help determine protected paste volume

Protected Paste Volume
Objectives

• Use x-ray to track water movement from LWA to paste near the time of set
• Relate water movement to the time of set
• Monitor distance water moves at early age
• Show the importance of protected paste on proportioning
Outline

• Background on Internal Curing
• Background on X-Ray Absorption
• Relate Water Movement to the Time of Set
• How Far the Water Moves at Early Ages
• Shrinkage Measurements
• Why all this is Important
• Conclusions
Background on Internal Curing

- **Chemical Shrinkage**
 - Hydration product volume is smaller than cement and water volume

- **Autogenous Shrinkage**
 - Measured external volume change in sealed conditions

![Diagram showing chemical shrinkage and hydration products]
Background on Internal Curing

Before Set

Chemical Shrinkage

→

Autogenous Shrinkage

After Set

Chemical Shrinkage

> Autogenous Shrinkage

Internal Voids

Vapor-Filled Voids

Autogenous Shrinkage

Autogenous Shrinkage

Internal Voids
Background on Internal Curing

Chemical Shrinkage
Autogenous Shrinkage

Created Void Space = Cause of Shrinkage Cracking

Approximate Time of Set Initial Set

Shrinkage Volume (ml/g Cement)

Age of Specimen (Days)
Outline

• Background on Internal Curing
• Background on X-Ray Absorption
• Relate Water Movement to the Time of Set
• How Far the Water Moves at Early Ages
• Shrinkage Measurements
• Why all this is Important
• Conclusions
Background on X-Ray Absorption

- Observe differences in density
- Lighter is more dense
- As volume of water changes, density changes
Outline

• Background on Internal Curing
• Background on X-Ray Absorption
• Relate Water Movement to the Time of Set
• How Far the Water Moves at Early Ages
• Shrinkage Measurements
• Why all this is Important
• Conclusions
Relate Water Movement to the Time of Set

- LWA prism cast next to cement paste
- Fixed position and macro-water movement
Relate Water Movement to the Time of Set

- Water remains in the pores of LWA until after set

Counts_{@i,LWA} - Counts_{@3.5,LWA}

Counts_{@i,LWA} – Counts_{@3.5,LWA}

X-Ray Measurements

Age of Specimen (h)

Difference in Counts from Initial Counts at 3.5 h

Initial Set

Water is lost from LWA

Void Volume (mL/g cement)

Shrinkage Volume (ml/g cement)
Relate Water Movement to the Time of Set

Water is lost from LWA

Water is lost from LWA

LWA Interface

Water is gained from Paste

Likely Edge
Sample Orientation

- Sample was rotated to correct orientation
- Reduce the size of the ‘interface’
- Reduce Uncertainty
Outline

• Background on Internal Curing
• Background on X-Ray Absorption
• Relate Water Movement to the Time of Set
• How Far the Water Moves at Early Ages
• Shrinkage Measurements
• Why all this is Important
• Conclusions
How Far the Water Moves at Early Ages

- Water is able to move approximately 1.8 mm in first 24-75 hours
Outline

• Background on Internal Curing
• Background on X-Ray Absorption
• Relate Water Movement to the Time of Set
• How Far the Water Moves at Early Ages
• Shrinkage Measurements
• Why all this is Important
• Conclusions
Shrinkage Measurements

Shrinkage Measurements

Typical Response of 3 Samples

Same Volume of Water, More Distribution

LWA-H

LWA-K

Strain (µε)

Age of Specimen (d)

0 2 4 6 8 10

-60 -50 -40 -30 -20 -10 0

ACI Spring Convention March 15-19, 2009 Slide 20 of 27
Outline

• Background on Internal Curing
• Background on X-Ray Absorption
• Relate Water Movement to the Time of Set
• How Far the Water Moves at Early Ages
• Shrinkage Measurements
• Why all this is Important
• Conclusions
Why is this important

- Water does not move before set
 - Don’t change workability or w/c
- Need paste within close proximity to LWA
 - Want paste within 2 mm of LWA particle
Proper Proportioning

- Select proper grading
- LWA sand is more beneficial than LWA rock
Conclusion

• X-ray absorption can be used to monitor water movement
• Must have proper sample alignment for accurate measurements
• Water does not move before set
• Smaller LWA particles protect more paste
• The distance water can move is important to selecting the proper aggregate grading
Acknowledgements

• This work was supported in part by the Joint Transportation Research Program administered by the Indiana Department of Transportation and Purdue University and the Advanced Center for Cement-Based materials

• John Roberts
 – Northeast Solite Corporation

• Jack Spaulding
 – Hydraulic Press Brick Company
References
